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Changes of mRNA expression underlying orbital 
adipogenesis in thyroid-associated orbitopathy

Xiao Jing Bai1,2,3, Xiao Jing Chu2, Tao Yang4, Bo Ding Tong1,3, Xin Qi1,3, Yang Yang Peng1,3, Yuan Li1,3, 
Lu Jue Wang1,3, Yun Ping Li1,3

Thyroid-associated orbitopathy (TAO), also known as Graves’ ophthal-
mopathy, is the most common orbital disease in adults. It is the most 
prevalent extrathyroidal manifestation of Graves’ disease, affecting up 
to 50% of the patients [1]. TAO is an autoimmune disorder characterized 
by immune-mediated inflammation of the adipose tissue and extraocu-
lar muscles, and clinically manifests as proptosis and double and/or im-
paired vision (Figure 1). This can cause permanent facial disfigurement 
and even blindness [2]. The monoclonal antibody teprotumumab, which 
targets the insulin-like growth factor 1 receptor (IGF-1R), has shown un-
precedented clinical potential for TAO treatment [3]. However, a  large 
proportion of patients with TAO at the inactive stage are refractory to 
therapy. In addition to surgical treatment, limited non-invasive and ef-
fective therapeutic options are available for these patients. Thus, a bet-
ter understanding of the pathophysiology of patients with inactive TAO 
could provide insights for developing new therapeutic targets that may 
better help the patients for whom the current medication is ineffective.

Remodeling of the orbital connective tissue including hyperplasia of 
fat tissue, fibrosis of extraocular muscles and accumulation of glycos-
aminoglycans is a feature of inactive TAO [2]. Orbital fibroblasts (OFs) are 
the key effectors in TAO pathogenesis. Transcriptomic profiling analysis 
of the orbital adipose tissue, OFs, and orbital adipose-derived stem cells 
(OASC) has highlighted the importance of immune and inflammatory re-
sponses during orbital adipogenesis [4], suggesting that TIMD4, DEFA1, 
DEFA1B, and DEFA3 may be involved in the innate immune-mediated 
orbital inflammation in TAO [4]. Moreover, elevated expression levels of 
secreted frizzled-related protein-1 (sFRP-1) and cysteine-rich, angiogenic 
inducer, 61 (CYR61) as well as downregulated expression of parathyroid 
hormone-like hormone (PTHLH) may stimulate orbital adipose tissue ex-
pansion [4–7]. However, further studies are required to elucidate the mo-
lecular mechanisms underlying the complex pathogenesis of TAO. There-
fore, in this study, we investigated the transcriptional reprogramming in 
the orbital tissue of patients with TAO and explored potential therapeutic 
targets for the treatment of inactive TAO.
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All patients enrolled in this study were diag-
nosed with TAO based on the guidelines of the 
European Thyroid Association/European Group on 
Graves’s Orbitopathy (2016EUGOGO [8]). Patients 
with cancer, other autoimmune diseases or elevat-
ed IgG4 levels in serum [9] were excluded from the 
study. Six euthyroid patients with TAO refractory to 
medical therapy, with a clinical activity score (CAS) 

of less than 3 for at least 6 months, were selected 
as research subjects. Six control samples were ac-
quired from the post-orbital septal adipose tissue 
of patients without hyperthyroidism or other au-
toimmune diseases who had undergone cosmetic 
surgery. The basic characteristics of the partici-
pants included in this study are shown in Table I.  
After isolation, samples were quickly placed in 

Figure 1. Permanent facial disfigurement and 
imaging findings of patients with TAO. A – Eyelid 
retraction in right eye; proptosis, restricted eye 
movement, double vision and exposure keratitis 
in left eye. B – Proptosis for hyperplasia of orbit 
fat tissue in computed tomography (CT) image.  
C – Thyroid associated optic neuropathy (TON) due 
to hyperplasia of orbit fat tissue and fibrosis of ex-
traocular muscles in CT image

Table I. Clinical features of patients with TAO and controls for RNA-seq analysis

Sample
n

Gender Age
[year]†

DTED
[month]

ET
[mm]***

PT CAS
(0–7)****

Surgery

T1 F 36 48 19 Me + Mp 1 EdP

T2 M 20 12 26 Mp 1 EdP

T3 F 42 22 21 Me + Mp 2 EdP

T4 F 48 24 19 Me + Mp 1 EdP

T5 M 53 8 17 Mp 2 EdP

T6 M 17 24 21 Me + Mp 1 EdP

C1 F 30 – ≤ 14 – 0 blp

C2 F 23 – ≤ 14 – 0 blp

C3 F 20 – ≤ 14 – 0 blp

C4 F 28 – ≤ 14 – 0 blp

C5 F 23 – ≤ 14 – 0 blp

C6 F 50 – ≤ 14 – 0 Eof

Me – methimazole, Blp – blepharoplasty, Edp – orbital decompression, DTED – duration of thyroid disease prior to surgery, ET – Hertel 
exophthalmometer, PT – previous treatment, Mp – methylprednisolonem, CAS – Clinical Activity Score, Eof – excision of orbital fat 
prolapsed, †p = 0.3719, ***p < 0.0001.
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cryotubes and stored in liquid nitrogen for short-
term storage. For further experiments, the sam-
ples were transferred to a –80°C refrigerator and 
extracted within 24 h.

This study was approved by the Ethics Com-
mittee of the Second Xiang Ya Hospital of Cen-
tral South University (No: 2021111) and conduct-
ed based on the principles of the Declaration of 
Helsinki. All patients signed an informed consent 
form in full awareness before enrollment.

Total RNA was extracted and isolated from each 
sample using TRIzol reagent (Invitrogen, Carlsbad, 
CA, USA), according to the manufacturer’s pro-
tocol. RNA concentration and integrity were de-
tected using Nanodrop 2000 (Thermo Scientific, 
Waltham, MA, USA) and an Agilent 2100 Bioan-
alyzer (Agilent Technologies, Palo Alto, CA, USA). 
All mRNA samples met the following criteria: opti-
cal density (OD) 260/280 = 1.8–2.2, RNA 28S/18S  
≥ 1.0, and RNA integrity number ≥ 7.

Next, total mRNA was purified using oli-
go(dT)-attached magnetic beads and transformed 
into cDNA. Subsequently, the synthesized cDNAs 
were subjected to end-repair and then adenylat-
ed at the 3′ ends. The adenylated cDNA fragments 
were linked to adapters, amplified using PCR, and 
purified using Ampure XP Beads (AGENCOURT, 
Beverly, MA, USA). The library was evaluated using 

an Agilent 2100 Bioanalyzer for quality control. 
The resultant products were heated, denatured, 
and circularized by the splint oligo sequence to 
obtain a  single-strand circle DNA (ssCir DNA) as 
the final library. The final library was amplified 
using phi29 (Thermo Fisher Scientific, MA, USA) 
to create DNA nanoballs (DNBs), which contained 
more than 300 copies of each molecule. DNBs 
were loaded into a patterned nanoarray and pair-
end 150 bp reads were generated on the MGI2000 
platform (BGI, Shenzhen, China).

Raw data containing sequencing adapters or 
low-quality sequences were filtered using the 
quality control software SOAPnuke (BGI, Shen-
zhen, China). After filtering, the number of reads 
per sample ranged from 36 to 48 million (M). These 
clean reads were aligned to the human reference 
genome (GRCh38) using HISAT2 (version 2.2.1) 
[10]. HTSeq (version 0.13.5) [11] was applied to 
the BAM files to calculate the counts mapped to 
each gene in the union-counting mode.

Raw read counts were provided as inputs to 
DESeq2 for differential expression analysis [12]. 
After excluding genes with less than ten total read 
counts or zero read counts in more than three 
samples, internal variance stabilizing transforma-
tion was used to normalize the count data. Genes 
with a  p < 0.05 (adjusted by the Benjamini and 
Hochberg correction) and fold change > 2.0 were 
defined as differentially expressed genes. Web-
Gestalt [13] was used to probe enriched terms 
and pathways using Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and 
Reactome databases. A  significance level of FDR  
< 0.05 was applied. 

Another 8 pairs of samples of patients with TAO 
and controls were analyzed by performing quanti-
tative real-time reverse transcription (qRT-PCR). To-
tal RNA was isolated from the orbital fat tissue us-
ing TRIzol reagent (Invitrogen, Carlsbad, CA, USA). 
mRNA was reverse-transcribed into cDNA using 
Oligo(dT) and RevertAid First Strand cDNA Synthe-
sis Kit (Thermo Scientific, Waltham, MA, USA). qRT-
PCR was performed and the results were analyzed 
using FastStart Universal SYBR Green Master (Rox) 
(Roche Diagnostics, Germany) in a StepOne Real- 
time PCR System (Applied Biosystems). β-actin 
was used as an endogenous control for normaliza-
tion. The primers used for the qRT-PCR are listed in 
Table II. Relative gene expression data were ana-
lyzed using the comparative CT method.

The statistical significance of differences was 
assessed by Student’s t-test. Differentially ex-
pressed RNAs were identified by fold change (FC) 
≥ 2.0 and p < 0.05.

In this study, we identified 468 significant 
DEGs, with 245 DEGs having downregulated and 
223 DEGs having upregulated expression, in TAO 

Table II. Sequence of primers of genes for qRT-PCR

Gene name Forward and reverse primer

WNT F:5′GAGAAACGGCGTTTATCTTCG 3′ 

R:5′ GGATTCGATGGAACCTTCTGAG 3′

WNT2 F:5′ TCTTGAAACAAGAGTGCAAGTG 3′

R :5′TACACGAGGTCATTTTTCGTTG 3′

WNT4 F:5′ GAACCTGGAAGTCATGGACTC 3′

R:5′ GTTAGACTTGCTGCTGAGTCTA 3′

PPARG F :5′AGATCATTTACACAATGCTGGC 3′

R :5′TAAAGTCACCAAAAGGCTTTCG 3′

FABP4 F :5′GGCCAAACCTAACATGATCATC 3′

R :5′TTATGGTGCTCTTGACTTTCCT 3′

CXCR2 F:5′ AAGGTGAATGGCTGGATTTTTG 3′

R :5′CCCAGATGCTGAGACATATGAA 3′

SCD F:5′ CTTTCTGATCATTGCCAACACA 3′

R:5′ TGTTTCTGAAAACTTGTGGTGG 3′

COL12A1 F:5′ CATTTGTTTGTGAAACTGCCAC 3′

R:5′ ACGCATTCTTCTGAATCCTGTA 3′

 C5 F:5′ GAGCGTTGTCCCAGTATTCTAT 3′

R :5′ACACACTGTAAGAGTAGTCAGC 3′

C6 F :5′GACGAAGAAATGAAAGAGGTCG 3′

R :5′CCAACAGTTTCAAAGCCAGTAA 3′

β-actin F :5′AAAGACCTGTACGCCAACAC 3′

R :5′GTCATACTCCTGCTTGCTGAT 3′
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Figure 2. Differentially expressed genes of mRNA between patients with TAO and controls. A – The volcano plots 
display the fold-changes and p-values of differential mRNA expression in patients with TAO. Based on the rela-
tionship between fold-change and statistical significance, subsets of mRNAs were isolated. The cut-off for logFC 
is 1.5. The red point represents the upregulated mRNAs with statistical significance p < 0.05, while the blue point 
represents the significantly downregulated expression. B – The heatmap of the top 50 differentially expressed 
mRNAs in patients with TAO. Each row represents the relative expression level of an mRNA, and each column dis-
plays the expression level of a patient sample. Colors represent relative intensity of each sample. Red, high relative 
expression; blue, low relative expression
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samples compared with that in controls, which 
were believed to contribute to TAO pathogenesis 
(FC ≥ 2.0, p < 0.05, Figure 2 A). The top 50 signifi-
cantly altered (both upregulated and downregu-
lated) DEGs are shown in Figure 2 B.

All the 468 DEGs underwent GO enrichment 
analysis and KEGG pathway analysis. The main 
enriched biological processes (BP) are extracel-
lular matrix organization and extracellular struc-
ture organization (Figure 3 A). The main enriched 
cellular components (CC) are extracellular matrix 
and collagen-containing (Figure 3 B). The main 
enriched molecular functions (MF) are sulfur 
compound binding and receptor regulator activity 
(Figure 3 C). 

KEGG pathway analysis was conducted and 
demonstrated that the upregulated genes were 
involved in the PPAR signaling pathway, regulation 
of lipolysis in adipocytes, fatty acid metabolism, 
glycerolipid metabolism and the insulin signal-
ing pathway, while downregulated genes were 
enriched in the pathways including ECM-recep-
tor interaction, protein digestion and absorption, 
proteoglycans in cancer, basal cell carcinoma and 
focal adhesion (Figure 4).

Ten genes were selected for qRT-PCR valida-
tion. C5, WNT4, COL12A1, WNT, WNT2, C6, CXCR2, 
FABP4, PPARG, and SCD were selected to validate 
the altered DEGs in sequence analysis. The results 

showed that the expression of C5 was significant-
ly increased in orbit fat from patients with TAO 
(p < 0.0001, Figure 5). Likewise, COL12A1, WNT, 
and WNT4 were significantly decreased in orbit 
fat from patients with TAO (p < 0.01 and p < 0.05 
respectively; Figure 5). The differential expression 
levels of WNT2, C6, CXCR2, FABP4, PPARG and SCD 
between the two groups were not statistically sig-
nificant (Figure 5). The qRT-PCR results were con-
sistent with the mRNA sequence.

Previous studies investigated transcriptomic 
profiling of TAO orbit fat from orbital fibroblasts 
undergoing adipogenesis or adipose-derived stem  
cells [4, 14]. By using next generation RNA se-
quencing technology, transcriptome analysis of 
orbital adipose tissue in active TAO was conduct-
ed [15]; however, the study did not involve the in-
active ones. There were no effective treatments 
for those patients with TAO, especially with pro-
ptosis.

We validated the dysregulation of Wnt sig-
naling and enhanced expression of complement 
genes in inactive TAO. Expression of genes in-
volved in connective tissue development and col-
lagen biosynthesis was also significantly altered 
in the TAO samples compared with that in the 
controls. These results highlight the importance of 
transcriptional and post-transcriptional regulatory 
processes in TAO pathogenesis.
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Figure 3. The GO analysis of DEGs. A – The main 
enriched biological processes are extracellular ma-
trix organization and extracellular structure organi-
zation. B – The main enriched cellular components 
are extracellular matrix and collagen-containing.  
C – The main enriched molecular functions are 
sulfur compound binding and receptor regulator 
activity
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Previous studies have demonstrated a connec-
tion between the Wnt signaling pathway and adi-
pogenesis. Differential expression of Wnt5A, sFRPs, 
and DKK was observed in patients with TAO who 
were not subjected to anti-inflammatory treat-
ment [16]. Even after eliminating the influence of 
inflammatory factors in the vitro experiment, the 
expression of Wnt signaling pathway components 
was significantly suppressed in OASCs [4]. During 
adipogenesis, WNT5A was overexpressed only 
during the early stage and the expression grad-
ually decreases during the differentiation process 

[14]. Consistent with the results of previous stud-
ies, downregulation of WNT and WNT4 expression 
was observed in TAO, even in patients who had re-
ceived anti-inflammatory therapies. These results 
suggest that except for inflammatory factors, oth-
er unknown regulatory factors may inhibit the ex-
pression of Wnt signaling pathway genes in TAO, 
which should be investigated further.

Considering that autoimmune diseases may 
have similar underlying pathological processes, 
we speculated that elevated expression of C5 in 
TAO may promote remodeling of the orbital tis-
sue for the following reasons. First, C5 is closely 

associated with inflammation. An autoimmune re-
sponse can activate the complement system. Acti-
vated C5 (C5a) not only recruits inflammatory cells 
to induce inflammation but also enhances the ex-
pression of IL-17 to aggravate the inflammatory 
response [17, 18]. IL-17A can exacerbate fibrosis 
by promoting the proinflammatory and profibrotic 
function of OFs in TAO [19]. Furthermore, in the 
study, the expression of C5a receptor (C5aR) in 
adipose tissue was positively correlated with lo-
cal inflammation, which could be reversed by the 
C5aR antagonist (C5aRa) in the mouse model [20]. 
This highlights the strong connection between C5 
expression and inflammation in adipose tissue. 
Second, C5, especially C5a, has been identified 
as a  new profibrotic factor and a  potential new 
therapeutic target because it can stimulate the 
production of TGF-β1. C5aRa can inhibit the pro-
duction of TGF-β1 in cultured mouse renal tubular 
cells [21]. TGF-β1 is a key factor in promoting the 
differentiation of OFs into myofibroblasts, which 
leads to fibrosis of the extraocular muscle in TAO 
[22]. Elevated expression of C5a in an inflamma-
tory environment promotes fibrosis in the kidneys 
[23]. Finally, C5 has shown potential in the treat-

Figure 5. Validation of differential mRNA expres-
sion by qRT-PCR. Relative expression of C5, WNT4,  
COL12A1, WNT, WNT2, C6, CXCR2, FABP4, PPARG, 
and SCD in patients with TAO is shown. As com-
pared to control, n = 8 for each group. *p < 0.05;  
**p < 0.01,****p < 0.0001, Student’s t-test
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ment of autoimmune diseases. The humanized 
monoclonal antibody eculizumab against C5 can 
reduce the risk of optic neuritis spectrum disease 
recurrence and shows a  better effect in a  vari-
ety of refractory autoimmune diseases [24–26]. 
Furthermore, C5 expression was detected in the 
thyroid tissue of patients with Graves’ disease via 
immunohistochemistry [27]. Therefore, C5 may 
also play a crucial role in the development of TAO 
lesions and is a  potential therapeutic target for 
TAO; however, further studies are required to de-
termine the role of C5.

Changes in extracellular matrix components 
can influence the function of the cells residing in 
it [28]. The activated effector cells in TAO secrete 
large amounts of hyaluronic acid to remodel the 
extracellular matrix, which can affect the prolifera-
tion and differentiation of preadipocytes [29]. The 
downregulation of different COL12A1 transcripts 
caused by alternative splicing was observed in the 
active TAO orbital fat [30]. Consistent with previ-
ous results, low expression of COL12A1 in TAO was 
also detected in this study, although the samples 
were derived from patients in the stable phase. 
Changes in collagen microstructure can regulate 
fibroblast differentiation and fibrosis by altering 
cellular mechanical signals [31]. However, wheth-
er the change in collagen composition is involved 
in the remodeling of the TAO orbital connective 
tissue requires further confirmation.

Our study has some limitations. First, the small 
sample size may have affected the representative-
ness of the results. Second, the control samples 
were all from young and middle-aged women, 
which resulted in a sex-related bias in sample col-
lection. This bias may be reflected in the differ-
ential expression of sex-related genes. Although 
TAO is more prevalent in females, severe TAO is 
relatively more common in males [32]; therefore, 
the results of differential expression analysis be 
skewed. In the future, we will include more male 
and elderly patients in the control group to further 
verify the representativeness of the DEGs.

In conclusion, we identified a  large number of 
novel DEGs, which help us to better characterize 
the molecular mechanisms underlying TAO patho-
genesis, and provided new therapeutic targets at 
the transcriptional and post-transcriptional levels. 
These data could be an important resource for 
future research on TAO and autoimmune diseas-
es. Notably, based on the results of transcriptome 
analysis and subsequent confirmatory studies, we 
propose that the C5 and Wnt signaling pathways 
may stimulate connective tissue remodeling in TAO.

The Wnt signaling pathway and C5 are poten-
tial therapeutic targets for TAO, which have value 
for further research. Our study sheds new light on 
the mechanisms underlying TAO pathogenesis.
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